RBN-2397: A potent and selective small molecule inhibitor of PARP7 that induces tumor-derived antitumor immunity dependent on CD8 T cells

• Joe Gozgit
• Ribon Therapeutics
Disclosure Statement

- I am an employee and shareholder of Ribon Therapeutics
Targeting PARP7 to Restore Tumor-Derived Type I Signaling is a Novel Therapeutic Strategy in Cancer

- Engaging cytosolic nucleic acid sensing and the Type I interferon (IFN) response is an emerging therapeutic strategy
 - Stimulate production of cytokines to promote an adaptive immune response
 - Currently, most approaches involve agonistic modulation of the tumor microenvironment
- PARP7 is a monoPARP regulated by cancer relevant stresses
 - Amplified in cancers with strong smoking association
 - Acts as a “brake” on cytosolic nucleic acid sensing and suppresses Type I IFN signaling

Targeting a negative regulator of tumor-produced Type I IFN is a novel therapeutic strategy

<table>
<thead>
<tr>
<th>Adaptive Immunity</th>
<th>Innate Immunity: Type I IFN Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell</td>
<td>Tumor microenvironment (TME)</td>
</tr>
<tr>
<td></td>
<td>(DC, MΦ)</td>
</tr>
</tbody>
</table>

PARP7 acts as a fundamental regulator of intrinsic stress support pathways and is a novel tumor vulnerability in cancer cells
PARP7 Acts as a Brake on Cytosolic Nucleic Acid Sensing and the Type I IFN Response

Aberrant nucleic acids can be detected by various sensing mechanisms including cGAS/STING and RIG-I

Overexpression of PARP7 suppresses IFN-β response to dsDNA

PARP7 has been reported to negatively regulate the Type I response by interacting with TBK1 during viral infection (Yamada et al., 2016)

Suppression of IFN-β by PARP7

HEK293T cells transfected with PARP7 treated with synthetic double stranded (ds)-DNA for 24 hours
RBN-2397 is a Potent and Selective Inhibitor of PARP7

- **RBN-2397 is a potent inhibitor of PARP7**
 - Binds to PARP7 in the NAD+ binding pocket with key interactions in adenosine sub-pocket driving potency and selectivity
 - Sub-nanomolar biochemical activity

- **RBN-2397 displays selectivity to PARP7**
 - >50-fold selective vs. PARP family
 - No inhibition in kinase panel (1 µM)

- Drug-like properties support oral dosing in humans

- First in human Phase I multi-center clinical trial is underway (NCT04053673)
RBN-2397 Potently and Selectively Inhibits PARP7-Dependent Activity Compared to PARP1

- PARPs regulate their cellular function by modifying target proteins with ADP-ribose
 - PolyPARPs (e.g., PARP1) attach polymers of ADP-ribose units (PARylation)
 - MonoPARPs (e.g., PARP7) modify proteins with a single unit of ADP-ribose (MARylation)

PARP family consists of 17 members:
2 subclasses based on catalytic activity

Vyas et al., 2013

PARP1 inhibitor: Niraparib

IC_{50} = 0.003 µM

PARP7 inhibitor: RBN-2397

IC_{50} = 0.002 µM

PARP1-H_{2}O_{2} activated Hela cells (PAR)

PARP7-overexpressing SK-MES-1 cells (MAR)

Lu et al., 2019

24-hour treatment
RBN-2397 Restores Cytosolic Nucleic Acid Sensing in the Mouse CT26 Cancer Cell Line

PARP7 inhibition “releases the brake” on cytosolic nucleic acid sensing and induces Type I IFNs

Restoration of Type I IFN response is measured by an increase in STAT1 phosphorylation and interferon stimulated genes (ISGs)

RBN-2397 restores Type I IFN response in CT26 cells

Induction of pSTAT1

Selective induction of CXCL10

DO NOT POST
RBN-2397 Restores Cytosolic Nucleic Acid Sensing Dependent on Pattern Recognition Receptor Signaling

Pharmacological inhibitors used to investigate the role of PARP7 in suppressing Type I IFNs

RBN-2397 restores Type I IFN signaling through pattern recognition receptor pathway

Blockade of: TBK1 | JAK | STING

24-hour treatment

RX795: TBK1 inhibitor
Ruxolitinib: JAK inhibitor
C-178: STING inhibitor
RBN-2397 Induces Tumor-Specific Adaptive Immune Memory in CT26 Syngeneic Model with Durable Complete Responses

Primary Efficacy: RBN-2397 induces durable regressions

- Once daily oral dosing of RBN-2397 in CT26 tumor-bearing BALB/c mice
- Tumor-free mice were monitored for 60 days

Re-challenge of tumor-free mice: Rejection of CT26 cells

- Tumor-free mice re-challenged with CT26 and subsequently 4T1 cells
- All tumor-free mice rejected CT26 cells but not 4T1, demonstrating induction of tumor-specific adaptive immune memory

TF: Tumor free mice
All groups co-dosed with ABT

DO NOT POST
Adaptive Immune Response is Indispensable for RBN-2397 Antitumor Activity

Characterization of immune cell populations present in BALB/c and NOG mice

<table>
<thead>
<tr>
<th>CT26 mouse model</th>
<th>Innate immune cells</th>
<th>Adaptive immune cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Strain</td>
<td>RBN-2397 Efficacy</td>
<td>NK</td>
</tr>
<tr>
<td>BALB/c</td>
<td>Tumor regression</td>
<td>+</td>
</tr>
<tr>
<td>NOG</td>
<td>~50% TGI</td>
<td>-</td>
</tr>
</tbody>
</table>

+: Present; -: Absent
a: Reduced macrophage and dendritic cell function

RBN-2397 shows substantially reduced activity in CT26 tumor-bearing immunodeficient mice

BALB/c: Immunocompetent

- Vehicle
- 3 mg/kg
- 10 mg/kg
- 30 mg/kg
- 100 mg/kg

NOG: Immunodeficient

- Vehicle
- 30 mg/kg
- 100 mg/kg
Robust Depletion of Immune Cell Populations in CT26 Tumor-Bearing Mice

Scheme for immune cell depletion in CT26-tumor-bearing BALB/c mice

- Administration of blocking antibodies to deplete CD4, CD8 and NK cells
- Tumor implantation
- RBN-2397 dosing
- Efficacy readout

Specific depletion of immune cell populations

Blood absolute counts

- Isotype control
- Anti-CD4
- Anti-CD8
- Anti-asialoGM1
- Anti-CD4 + anti-CD8 + anti-asialoGM1

Tumor absolute counts

- Isotype control
- Anti-CD4 + anti-CD8 + anti-asialoGM1
CD8 T Cells Are Essential for the Antitumor Immunity Induced by RBN-2397 in the CT26 Syngeneic Model

CD4 T cell depletion had no effect on antitumor activity

NK cell depletion had no effect on antitumor activity

CD8 T cell depletion attenuated antitumor activity

Triple depletion was not different than CD8 T cell single depletion

All groups co-dosed with ABT
RBN-2397 Induces Type I IFN Signaling and Enhances Immune Markers in CT26 Tumors

RBN-2397 shows dose-dependent effects on PD markers in CT26 tumors

RBN-2397 enhances antigen presentation and T cell activation in tumor-infiltrating immune cells

CT26 tumor-bearing mice administered as single oral dose. All groups co-dosed with ABT

CT26 tumor-bearing mice dosed with RBN-2397 500 mg/kg. Tumors collected on days 3, 6 & 12.

DO NOT POST
Type I IFN Produced by Tumors in Response to RBN-2397 Plays a Major Role in the Development of Durable Antitumor Immunity in CT26 Model

- Ablation of tumor TBK1 nearly eliminates the antitumor activity of RBN-2397
 - Tumor-produced IFN-β is the source of the innate immune activation and crucial for antitumor activity
- Blockade of tumor and host IFNAR1 signaling prevents the antitumor activity of RBN-2397
 - Suggests contribution of immune system through activation of IFN signaling in immune cells by tumor-produced IFN-β
RBN-2397 is the First Potent and Selective PARP7 Inhibitor to Enter Clinical Development

• Targeting PARP7 to restore tumor-derived Type I signaling is a novel therapeutic strategy in cancer
• Inhibition of PARP7 induces antitumor immunity dependent on tumor-produced Type I IFN and CD8 T cells
• RBN-2397 is the first agent targeting this cancer vulnerability to enter clinical development

PARP7 acts as a “brake” on cytosolic nucleic acid sensing and suppresses the Type I IFN response

Complete regressions and antitumor immunity as a single agent

Ribon PARP7 abstracts at AACR 2021
#381: PARP7 expression in cancer
#1021: PARP7 inhibitor mechanism of action studies
Acknowledgements

Team Ribon:

Ryan Abo
Ellen Bamberg
Danielle Blackwell
Richard Bushell
Anne Cheung
W. David Church
Lisa Cleary
David Cordo
Bryan Dorsey
Jennifer Downing
Joseph Gozgit
Linette Grey
Bin Gui
Heike Keilhack
Peter Kim
Danielle Knight
Kaiko Kunii

Kevin Kuntz
Kristy Kuplast-Barr
Jenkins Lemera
Chang Liu
Alvin Lu
Ahmed Mady
Christina Major
Kristen McEachern
Maegan Mikula
Elena Minissale
Jason Mo
Jennifer Molina
Sunaina Nayak
Mario Niepel
Sudha Paransuraman
Nicholas Perl
Yue Ren

Victoria Richon
Andy Santospago
Laurie Schenkel
Richard Schroeder
Prashant Shambharkar
Jeff Song
Tad Stewart
Kerren Swinger
Luke Utley
Zacharenia Varsamis
Melissa Vasbinder
Tim Wigle
Jodie Wong

Founders and Advisors:

Paul Chang
Lee Kraus
Timothy Mitchison
James Audia
Larry Lasky
Patricia Rao

ribon therapeutics