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INTRODUCTION

RESULTS

The poly-ADP-ribose polymerases (PARPs) are a family of

17 enzymes with conserved catalytic domains. They
regulate a wide variety of important cellular processes
including cellular stress signaling pathways implicated in
inflammation and cancer.

Much of the PARP research has been dedicated to the
four polyPARPs (PARP1, 2, 53, and 5b) which transfer
poly-ADP-ribose chains on their target proteins. In
particular, the critical role of PARP1/2 in DNA damage
response and repair has been studied extensively (see

Figure 2), leading to effective cancer therapies. However, )

the majority of PARPs are monoPARPs, which transfer a
single ADP-ribose to their target proteins. Recently,
several of these family members have emerged in the
literature as playing cancer-specific roles.
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Figure 1. Dendrogram illustrating
PARP family enzyme genetic
sequence alignment.

Figure 2. Bar plots showing the
number of publications, annotated
gene sets and gene-gene

associations for the PARP enzymes.

polyPARPs account for the majority

of research and annotation.

We set out to characterize the molecular features of PARPs and their role in human cancer
by mining the deep collection of publicly available molecular data from primary cancer,
normal tissue samples and cancer cell lines. We explored standard oncogene hypotheses
for all the PARPs, including mutational hotspots, copy-number variations, tumor mRNA
overexpression, survival associations to genomic or expression variation, and cancer cell

line dependency.

Our results provide the first pan-cancer in silico characterization of the PARP family,
revealing a broad molecular and potential mechanistic diversity among the PARPs across
cancer.
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Figure 4. (Above) PARP gene expression
correlations across cancers show CNV and

methylation as potential expression predictors across
cancers. PARP1/2 are consistently correlated with
HRD, MSI, TMB, FGA and stemness phenotypes,
while a subset of monoPARPs have strong immune
signature correlations and over-expression patterns.

Figure 5. (Below) Alluvial plot illustrates the
positive PARP gene expression correlations
with immune signatures by cancer type. Each
line represents an aggregate significance of
correlation between gene expression and
immune signatures (Wolf et al. 2014).
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Figure 6. (Above) Heatmap of the mean correlation across cancers between gene expression and pancan
gene program signatures (Hoadley et al. 2014). A consistent positive correlation between expression and
gene signatures observed for PARP family pan-PARP negative correlations with MYC target/TERT and
IGF1R pathway signatures. A strong subset of positive correlations with a subset of PARPs and immune
signatures (GP2 Immune-Tcell/Bcell, CTLA4 Pathway, GP11 Immune-IFN).

PARPs in Cancer Cell Lines
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Figure 7. PARP expression, CNV, mutation and CRISPR dependency scores are plotted across cancer cell
lines. In line with the primary tumor data in TCGA, the PARPs have few oncogenic events, aside from the

copy-number gains in PARP7 and PARPP10. The majority of the PARPs show no dependencies across cell
lines in Depmap (in vitro proliferation-based screen), other than PARP7 and PARP10.
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Figure 8. Biplots between PARP7 expression and PARP7 copy-number values (top-left) and CRISPR
dependency scores (bottom-left). Lung cancer cell lines are highlighted in blue with the Spearman
correlations between the molecular values, further indicating a role for PARP7 in lung cancer. (Middle)
A bar plot of the top 20 gene set enrichment results using PARP7 positively co-expressed genes from
lung cancer cell lines. There is a significant enrichment of innate immune and interferon-related gene
sets and pathways. (Right) A network graph highlighting the 15 most frequent genes in the leading
edges of immune-related co-expression enriched gene sets.

CONCLUSIONS

Our results provide the first pan-cancer in silico characterization of the PARP family, revealing
a broad molecular and potential mechanistic diversity among the PARPs across cancer.
Notwithstanding the lack of traditional oncogenic features, such as mutational hotspots, in
the PARPs, our analyses highlight several monoPARPs with potential oncogenic roles and
further support our focus of targeting these in the clinic (e.g., PARP7).

The high-level, multi-omic analyses in primary tumors and cancer cell lines presented here
further distinguish the polyPARPs and monoPARPs and help guide additional hypotheses to
further explore for a number of the monoPARPs. Specifically, there is a subset of the
monoPARPs (PARP9, PARP10, PARP12, PARP14, PARP15) with strong immune signature
associations across cancers, suggesting potential roles in the tumor microenvironment.

Future datasets with treated tumor samples, refined single-cell measurements, and more
molecular phenotyping will further elucidate the role of the PARP family in cancer.
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