RBN-2397: A First-in-Class PARP7 Inhibitor Targeting a Newly Discovered Cancer Vulnerability in Stress-Signaling Pathways

- Melissa Vasbinder
- Ribon Therapeutics
Disclosure Statement

- I am an employee and shareholder of Ribon Therapeutics
Not All PARPs Are Alike – Outside of PolyPARPs the PARP Family Is Unexplored for Therapeutic Development

- PARP family consists of 17 members
- Three subfamilies based on catalytic activity (polyPARPs, monoPARPs and inactive)
- Use common cofactor (NAD⁺) to post-translationally ribosylate substrates
- Outside of the conserved catalytic domain PARPs have limited homology and reflect diverse function
- MonoPARPs offer a mechanistically distinct and untapped opportunity beyond PARP1

Adapted from Vyas, Chang et. al. Nature Comm. 2013
PARP7: A Novel Brake on the Type I Interferon Response and Genetic Alterations in Cancer

- PARP7 is induced by cancer relevant stress (e.g., aryl hydrocarbon receptor ligands such as chemicals found in cigarette smoke and kynurenine)
- PARP7 gene locus is amplified in cancers with strong smoking association (e.g., squamous cell carcinoma of the lung (SCCL), head and neck and esophageal squamous cancers)
- PARP7 acts as a tumor cell brake in cytosolic nucleic acid sensing and the Type I interferon (IFN) response

PARP7 is frequently amplified in cancers of the upper aerodigestive tract

Highly expressed in primary SCCL tumors

PARP7 “brake” on nucleic acid sensing and Type I IFN response
PARP7 Hit Identified in Cross Screening of Ribon Library

Co-crystals of NAD⁺ and PARP7 hit bound to PARP16

Small molecule PARP inhibitors HTS and fragment screening hits
Crystal structures across PARP family
Structure based drug design

<table>
<thead>
<tr>
<th>PARP</th>
<th>Biochemical IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP7</td>
<td>9</td>
</tr>
<tr>
<td>PARP1</td>
<td>300</td>
</tr>
<tr>
<td>PARP16</td>
<td>3</td>
</tr>
</tbody>
</table>
Developed Biochemical and Cellular Assays which Enabled Optimization of PARP7 Inhibitors

High Quality PARP7 Protein

Biochemical Assay (TR-FRET)

Cell Biochemical Assay (MARylation)

Phenotypic Assay (Proliferation)

Wigle, et. al. SLAS Discovery, 2019

PARP7 inhibition in cells by measuring MARylation

NCI-H1373 lung cancer cells

Correlation Between Biochemical, Cell Biochemical, and Cell Phenotypic Assays
Optimization of Hit Led to Potent and Selective PARP7 Inhibitors

Biochemical IC\(_{50}\) (µM)

<table>
<thead>
<tr>
<th>PARP</th>
<th>PARP7</th>
<th>PARP1</th>
<th>PARP16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>300</td>
<td>3</td>
</tr>
</tbody>
</table>

PARP

- **PARP7**
 - Pan monoPARP fragment hit
 - IC\(_{50}\) = 9 µM

- **PARP1**
 - 300 µM

- **PARP16**
 - 3 µM

Biochemical IC\(_{50}\) (µM)

<table>
<thead>
<tr>
<th>PARP</th>
<th>Biochemical IC(_{50}) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP7</td>
<td>0.007</td>
</tr>
<tr>
<td>PARP1</td>
<td>0.3</td>
</tr>
<tr>
<td>All other monoPARPs similar potency to PARP7</td>
<td></td>
</tr>
</tbody>
</table>

PARP12 RBN011082

- Pan monoPARP selective inhibitor
- MAR/PAR difference region
- D-loop
- Adenosine sub-pocket

PARP12/7 RBN011364

- PARP7 potent and selective inhibitor
- Adenosine sub-pocket

Biochemical IC\(_{50}\) (µM)

<table>
<thead>
<tr>
<th>PARP</th>
<th>Biochemical IC(_{50}) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP7</td>
<td><0.003</td>
</tr>
<tr>
<td>PARP1</td>
<td>1</td>
</tr>
<tr>
<td>All other monoPARPs >20 fold selective</td>
<td></td>
</tr>
</tbody>
</table>
Discovery of Development Candidate RBN-2397

Co-crystal structure of RBN-2397 bound to PARP12/7

- Lead optimization efforts targeted interactions in key areas of the NAD$^+$ binding pocket
 - Adenosine sub-pocket: exploit positive interaction with PARP7 Gly541 and clash with bulky residues in other PARPs
 - Removed 2 aromatic rings which improved solubility and microsomal stability
- Optimization of physicochemical properties to identify development candidate
 - Cell MARylation EC$_{50}$ = 1 nM
 - >50-fold selective vs. PARPs
 - Low predicted human clearance

PARP12 was used as a surrogate for PARP7. Four labeled residues were mutated from PARP12 to match the PARP7 sequence.
RBN-2397 – PARP7 Development Candidate Summary

<table>
<thead>
<tr>
<th></th>
<th>RBN-2397</th>
</tr>
</thead>
</table>
| **Target potency** | NAD⁺ competitive inhibitor
 PARP7 IC₅₀ <3 nM
 Kᵦ <0.001 µM, t₁/₂ 325 min
 Cell MARylation EC₅₀ = 1 nM
 Cell Proliferation (NCI-H1373) GI₅₀ = 20 nM |
| **Selectivity** | >50-fold selective vs. PARP family
 No inhibition in kinase panel (1 µM) |
| **Compound properties** | MW: 523 / Solubility pH 7.4 PBS: 0.07 mg/mL
 cLogP: 1.8 / tPSA: 112
 Protein Binding 63% in human |
| **ADME** | Good in vitro / in vivo correlation across species
 Eliminated predominantly by metabolism
 Orally bioavailable |
| **Toxicology** | CYP P450 inhibition (>100 µM)
 hERG (> 10 µM)
 No inhibition in CEREP panel (1 µM) |
| **Pharmacology** | Complete tumor regressions as single agent in human tumor model
 Complete responses with tumor-specific adaptive immune memory in murine syngeneic model |
PARP7 Inhibitors Block Proliferation in a Subset of Cancer Cell Lines

Subset of cancer cell lines exhibit dependency on PARP7 for proliferation

- Cell line panel screen consisting of 125 cancer cell lines derived from multiple cancer types
- Clear differentiation compared to a PARP1 inhibitor
- Sensitive cell lines were enriched with genes involved in Type I interferon response and antigen presentation
RBN-2397 Restores Cytosolic Nucleic Acid Sensing and Blocks Cell Proliferation in a Human Lung Cancer Cell Line

- PARP7 inhibition “releases the brake” on cytosolic nucleic acid sensing and induces Type I IFNs in tumors
- Restoration of Type I IFN response is measured by an increase in STAT1 phosphorylation
- PARP7 inhibition blocks cell proliferation

PARP7 inhibitor RBN-2397 reverses block in Type I IFN response

PARP7 inhibitor RBN-2397 potently inhibits cell proliferation
RBN-2397 Causes Complete Regressions in Human NSCLC NCI-H1373 Xenografts and Dose-Dependent Pharmacodynamic Effects

Antitumor activity of RBN-2397

- Once daily oral dosing of RBN-2397 in CB17 SCID mice with NCI-H1373 xenografts
- Dose-dependent effects on tumor growth
- Tumor regression at dose levels of ≥30 mg/kg

Exposure-PD relationship

- Single oral dose of RBN-2397 in CB17 SCID mice with NCI-H1373 xenografts
- Exposure-dependent effects on ADP-ribosylation (MAR/PAR) and CXCL10 mRNA levels
RBN-2397 Induces Tumor-Specific Adaptive Immune Memory in CT26 Syngeneic Model with Durable Complete Responses

Primary Efficacy: RBN-2397 induces durable regressions

- Once daily oral dosing of RBN-2397 in CT26 tumor-bearing BALB/c mice
- Tumor-free mice were monitored for 60 days

Re-challenge of tumor-free mice: Rejection of CT26 cells

- Tumor-free mice re-challenged with CT26 and subsequently 4T1 cells
- All tumor-free mice rejected CT26 cells but not 4T1, demonstrating induction of tumor-specific adaptive immune memory

CT26 re-challenge

4T1 re-challenge

All groups co-dosed with ABT
CRISPR-Cas9 Used to Ablate either TBK1 or IFNAR1 in CT26 Cells to Investigate the Mechanism of Action of RBN-2397

- TBK1 knockout prevents both IRF3 & STAT1 phosphorylation by RBN-2397
- IFNAR1 knockout prevents STAT1 phosphorylation by RBN-2397
Tumor-derived Interferon Is Key for Antitumor Activity

- Ablation of tumor TBK1 prevents the antitumor activity of RBN-2397 in the CT26 tumor model
- IFN-β release by tumor cells is crucial for RBN-2397 mediated antitumor response

No PARP7i-mediated IFN-β release
No effects on cancer or immune cells
• IFNAR1 knockout initially attenuates antitumor activity of RBN-2397, but a subset of tumors start responding after Day 12
• Suggests onset of antitumor immunity around Day 12, induced by effects of tumor-derived IFN-β on immune cells
IFNAR1 Blockade on Tumor and Immune Cells Is Necessary to Prevent Antitumor Activity of RBN-2397 in the CT26 Tumor Model

- Dosing of anti-IFNAR1 neutralizing antibodies on the background of tumoral IFNAR1 KO prevents antitumor activity of RBN-2397
- Suggests contribution of immune system through activation of IFN-β signaling in immune cells

All groups co-dosed with ABT
Engaging Cytosolic Nucleic Acid Sensing in the Tumor Cell as an Emerging Therapeutic Strategy

Adaptive immunity

- T-cell

Cytosolic nucleic acid sensing - innate immune pathways

- Tumor microenvironment (TME)
 - (DC, MΦ)
 - STING
 - TLR7/9
 - RIG-I

- Tumor cell
 - PARP7

New cancer treatment strategy
RBN-2397 – A Novel Cancer Therapeutic Being Tested in Clinical Trials

- Discovered first potent and selective PARP7 inhibitor
 - Novel first-in-class therapy
- RBN-2397 inhibits PARP7 reactivating effective nucleic acid sensing, leading to:
 - Arrest of cancer cell proliferation and tumor regression
 - Increased signaling to the immune system
 - Development of immune memory
- Identified PARP7 as a fundamental regulator of intrinsic stress support pathways and a novel tumor vulnerability in cancer cells
- First in Human Phase I multi-center clinical trial underway (NCT04053673)
Acknowledgements

Team Ribon:
Ryan Abo
Ellen Bamberg
Danielle Blackwell
Richard Bushell
Anne Cheung
W. David Church
Lisa Cleary
David Cordo
Bryan Dorsey
Jennifer Downing
Joseph Gozgit
Linette Grey
Bin Gui
Heike Keilhack
Peter Kim
Danielle Knight
Kaiko Kunii
Kevin Kuntz
Kristy Kuplast-Barr
Jenkins Lemera
Chang Liu
Alvin Lu
Ahmed Mady
Christina Majer
Kristen McEachern
Maegan Mikula
Elena Minissale
Jason Mo
Jennifer Molina
Sunaina Nayak
Mario Niepel
Sudha Parasuraman
Nicholas Perl
Yue Ren

Victoria Richon
Andy Santospago
Laurie Schenkel
Richard Schroeder
Prashant Shambharkar
Jeff Song
Tad Stewart
Kerren Swinger
Luke Utley
Zacharenia Varsamis
Melissa Vasbinder
Tim Wigle
Jodie Wong

Founders and Advisors:
Paul Chang
Lee Kraus
Timothy Mitchison
James Audia
Larry Lasky
Patricia Rao

ribon therapeutics