RBN-2397: A First-in-Class PARP7
Inhibitor Targeting a Newly Discovered
Cancer Vulnerability in Stress-Signaling
Pathways

- Melissa Vasbinder
- Ribon Therapeutics

Disclosure Statement

• I am an employee and shareholder of Ribon Therapeutics

Not All PARPs Are Alike – Outside of PolyPARPs the PARP Family Is Unexplored for Therapeutic Development

- PARP family consists of 17 members
- Three subfamilies based on catalytic activity (polyPARPs, monoPARPs and inactive)
- Use common cofactor (NAD+) to posttranslationally ribosylate substrates
- Outside of the conserved catalytic domain PARPs have limited homology and reflect diverse function
- MonoPARPs offer a mechanistically distinct and untapped opportunity beyond PARP1

Adapted from Vyas, Chang et. al. Nature Comm. 2013

PARP7: A Novel Brake on the Type I Interferon Response and Genetic Alterations in Cancer

- PARP7 is induced by cancer relevant stress (e.g., aryl hydrocarbon receptor ligands such as chemicals found in cigarette smoke and kynurenine)
- PARP7 gene locus is amplified in cancers with strong smoking association (e.g., squamous cell carcinoma of the lung (SCCL), head and neck and esophageal squamous cancers)
- PARP7 acts as a tumor cell brake in cytosolic nucleic acid sensing and the Type I interferon (IFN)
 response

PARP7 is frequently amplified in cancers of the upper aerodigestive tract

Highly expressed in primary SCCL tumors

PARP7 in situ hybridization

PARP7 "brake" on nucleic acid sensing and Type I IFN response

PARP7 Hit Identified in Cross Screening of Ribon Library

Co-crystals of NAD⁺ and PARP7 hit bound to PARP16

Small molecule PARP inhibitors
HTS and fragment screening hits
Crystal structures across PARP family
Structure based drug design

Cross screening

PARP IC₅₀ (µM)

0.3

≤0.01

≥10

PARP7 hit

PARP	Biochemical IC ₅₀ (μΜ)
PARP7	9
PARP1	300
PARP16	3

Developed Biochemical and Cellular Assays which Enabled Optimization of PARP7 Inhibitors

Correlation Between Biochemical, Cell Biochemical, and Cell Phenotypic Assays

Optimization of Hit Led to Potent and Selective PARP7 Inhibitors

PARP	Biochemical IC ₅₀ (μM)
PARP7	9
PARP1	300
PARP16	3

PARP	Biochemical IC ₅₀ (μM)
PARP7	0.007
PARP1	0.3
All other monoPARPs similar potency to PARP7	

PARP	Biochemical IC ₅₀ (μΜ)
PARP7	<0.003
PARP1	1
All other monoPARPs >20 fold selective	

Discovery of Development Candidate RBN-2397

Co-crystal structure of RBN-2397 bound to PARP12/7

- Lead optimization efforts targeted interactions in key areas of the NAD⁺ binding pocket
 - Adenosine sub-pocket: exploit positive interaction with PARP7 Gly541 and clash with bulky residues in other PARPs
 - Removed 2 aromatic rings which improved solubility and microsomal stability
- Optimization of physicochemical properties to identify development candidate
 - Cell MARylation EC₅₀ = 1 nM
 - >50-fold selective vs. PARPs
 - Low predicted human clearance

RBN-2397 – PARP7 Development Candidate Summary

	RBN-2397
Target potency	NAD ⁺ competitive inhibitor PARP7 IC ₅₀ <3 nM K_D <0.001 μ M, $t_{1/2}$ 325 min Cell MARylation EC ₅₀ = 1 nM Cell Proliferation (NCI-H1373) GI_{50} = 20 nM
Selectivity	>50-fold selective vs. PARP family No inhibition in kinase panel (1 μ M)
Compound properties	MW: 523 / Solubility pH 7.4 PBS: 0.07 mg/mL cLogP: 1.8 / tPSA: 112 Protein Binding 63% in human
ADME	Good in vitro / in vivo correlation across species Eliminated predominantly by metabolism Orally bioavailable
Toxicology	CYP P450 inhibition (>100 μM) hERG (> 10 μM) No inhibition in CEREP panel (1 μM)
Pharmacology	Complete tumor regressions as single agent in human tumor model Complete responses with tumor-specific adaptive immune memory in murine syngeneic model

Potent and selective inhibitor

Drug-like properties support oral dosing in humans

On target activity in preclinical models

PARP7 Inhibitors Block Proliferation in a Subset of Cancer Cell Lines

Subset of cancer cell lines exhibit dependency on PARP7 for proliferation

- Cell line panel screen consisting of 125 cancer cell lines derived from multiple cancer types
- Clear differentiation compared to a PARP1 inhibitor
- Sensitive cell lines were enriched with genes involved in Type I interferon response and antigen presentation

RBN-2397 Restores Cytosolic Nucleic Acid Sensing and Blocks Cell Proliferation in a Human Lung Cancer Cell Line

Cancer cells stop growing Immune response, e.g. via CXCL10

- PARP7 inhibition "releases the brake" on cytosolic nucleic acid sensing and induces Type I IFNs in tumors
- Restoration of Type I IFN response is measured by an increase in STAT1 phosphorylation
- PARP7 inhibition blocks cell proliferation

PARP7 inhibitor RBN-2397 reverses block in Type I IFN response

NCI-H1373 human lung cancer cells, 24 h

PARP7 inhibitor RBN-2397 potently inhibits cell proliferation

NCI-H1373 lung cancer cells, 6-day assay

RBN-2397 Causes Complete Regressions in Human NSCLC NCI-H1373 Xenografts and Dose-Dependent Pharmacodynamic Effects

Antitumor activity of RBN-2397

- Once daily oral dosing of RBN-2397 in CB17
 SCID mice with NCI-H1373 xenografts
- Dose-dependent effects on tumor growth
- Tumor regression at dose levels of ≥30 mg/kg

Exposure-PD relationship

- Single oral dose of RBN-2397 in CB17 SCID mice with NCI-H1373 xenografts
- Exposure-dependent effects on ADP-ribosylation (MAR/PAR) and CXCL10 mRNA levels

RBN-2397 Induces Tumor-Specific Adaptive Immune Memory in CT26 Syngeneic Model with Durable Complete Responses

Primary Efficacy: RBN-2397 induces durable regressions

- Once daily oral dosing of RBN-2397 in CT26 tumor-bearing BALB/c mice
- Tumor-free mice were monitored for 60 days

Re-challenge of tumor-free mice: Rejection of CT26 cells

- Tumor-free mice re-challenged with CT26 and subsequently 4T1 cells
- All tumor-free mice rejected CT26 cells but not 4T1, demonstrating induction of tumor-specific adaptive immune memory

CRISPR-Cas9 Used to Ablate either TBK1 or IFNAR1 in CT26 Cells to Investigate the Mechanism of Action of RBN-2397

- TBK1 knockout prevents both IRF3 & STAT1 phosphorylation by RBN-2397
- IFNAR1 knockout prevents STAT1 phosphorylation by RBN-2397

Tumor-derived Interferon Is Key for Antitumor Activity

- Ablation of tumor TBK1 prevents the antitumor activity of RBN-2397 in the CT26 tumor model
- IFN-β release by tumor cells is crucial for RBN-2397 mediated antitumor response

IFNAR1 Knockout in CT26 Tumor Cells Partially Attenuates Antitumor Activity of RBN-2397 in the CT26 Tumor Model

- IFNAR1 knockout initially attenuates antitumor activity of RBN-2397, but a subset of tumors start responding after Day 12
- Suggests onset of antitumor immunity around Day 12, induced by effects of tumor-derived IFN-β on immune cells

IFNAR1 Blockade on Tumor and Immune Cells Is Necessary to Prevent Antitumor Activity of RBN-2397 in the CT26 Tumor Model

- Dosing of anti-IFNAR1 neutralizing antibodies on the background of tumoral IFNAR1 KO prevents antitumor activity of RBN-2397
- Suggests contribution of immune system through activation of IFN-β signaling in immune cells

Engaging Cytosolic Nucleic Acid Sensing in the Tumor Cell as an Emerging Therapeutic Strategy

RBN-2397 – A Novel Cancer Therapeutic Being Tested in Clinical Trials

- Discovered first potent and selective PARP7 inhibitor
 - Novel first-in-class therapy
- RBN-2397 inhibits PARP7 reactivating effective nucleic acid sensing, leading to:
 - Arrest of cancer cell proliferation and tumor regression
 - Increased signaling to the immune system
 - Development of immune memory
- Identified PARP7 as a fundamental regulator of intrinsic stress support pathways and a novel tumor vulnerability in cancer cells
- First in Human Phase I multi-center clinical trial underway (NCT04053673)

Complete regressions and antitumor immunity as a single agent

Acknowledgements

Team Ribon:

Ellen Bamberg
Danielle Blackwell

Richard Bushell

Anne Cheung

W. David Church

Lisa Cleary

Ryan Abo

David Cordo

Bryan Dorsey

Jennifer Downing

Joseph Gozgit

Linette Grey

Bin Gui

Heike Keilhack

Peter Kim

Danielle Knight

Kaiko Kunii

Kevin Kuntz Kristy Kuplast-Barr

Jenkins Lemera

Chang Liu

Alvin Lu

Ahmed Mady

Christina Majer

Kristen McEachern

Maegan Mikula

Elena Minissale

Jason Mo

Jennifer Molina

Sunaina Nayak

Mario Niepel

Sudha Parasuraman

Nicholas Perl

Yue Ren

Victoria Richon
Andy Santospago

Laurie Schenkel

Richard Schroeder

Prashant Shambharkar

Jeff Song

Tad Stewart

Kerren Swinger

Luke Utley

Zacharenia Varsamis

Melissa Vasbinder

Tim Wigle

Jodie Wong

Founders and Advisors:

Paul Chang Lee Kraus Timothy Mitchison James Audia Larry Lasky

Patricia Rao

