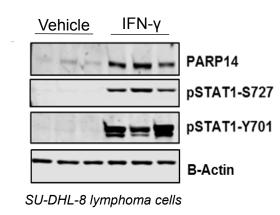
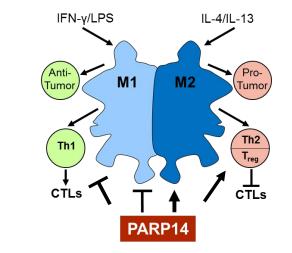
A Potent and Selective PARP14 Inhibitor Decreases Pro-Tumor Macrophage Function and Elicits Inflammatory Responses in Tumor Explants

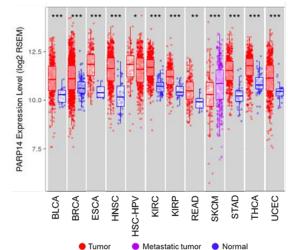
Laurie B. Schenkel Ribon Therapeutics

Disclosure Statement

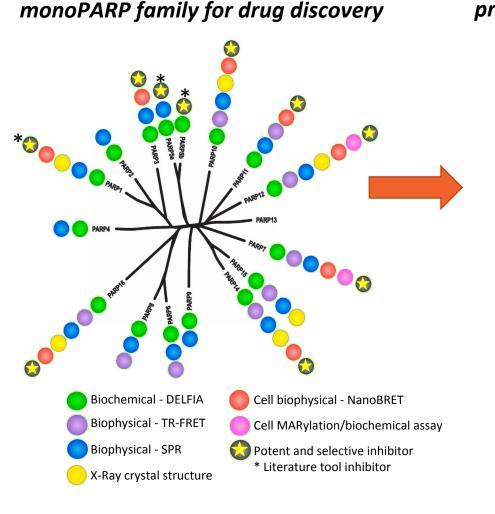
• I am an employee and shareholder of Ribon Therapeutics


PARP14 Is Overexpressed in Cancer and Implicated in Macrophage and T Cell Biology

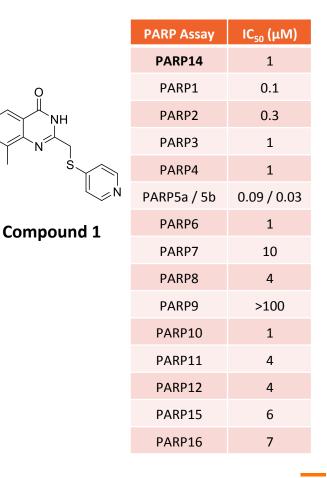

- The PARP family consists of 17 proteins (16 catalytically active) that use NAD⁺ to post-translationally ADP-ribosylate substrates
 - PolyPARPs are well-studied, and PARP1/PARP2 inhibitors have been approved
 - MonoPARPs offer a mechanistically distinct and untapped opportunity
- PARP14 is a member of the monoPARP sub-family
 - Downstream regulator of IFN-γ and IL-4 signaling
 - Immuno-oncology functions including regulation of M1/M2 macrophage differentiation
 - High expression in multiple tumor types


Interferon-stimulated gene

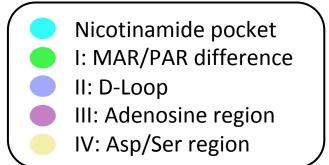
Affects the differentiation of immune cell subsets associated with human disease


Overexpressed in several cancer types compared to normal tissue

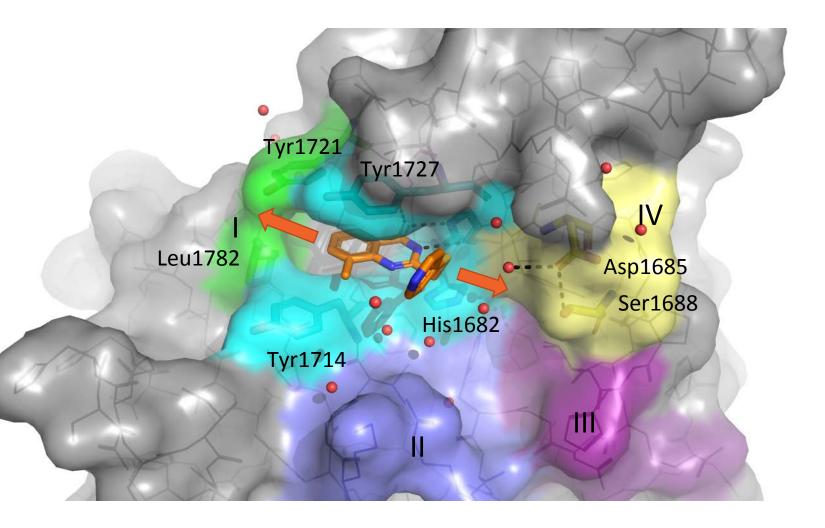
Screening Ribon's Compound Collection and Profiling Against a Panel of PARP Assays Identified a PARP14 Hit



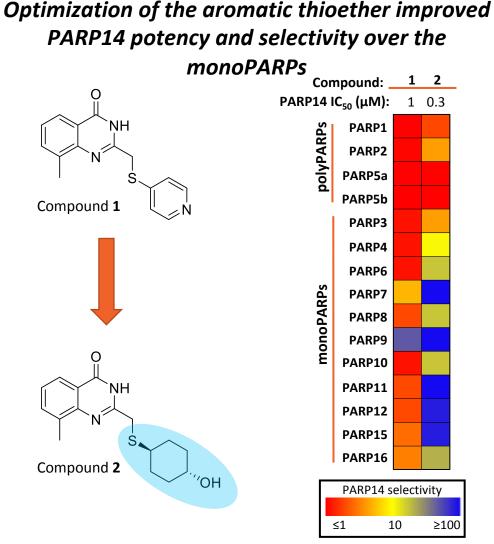
Ribon Platform enabled the

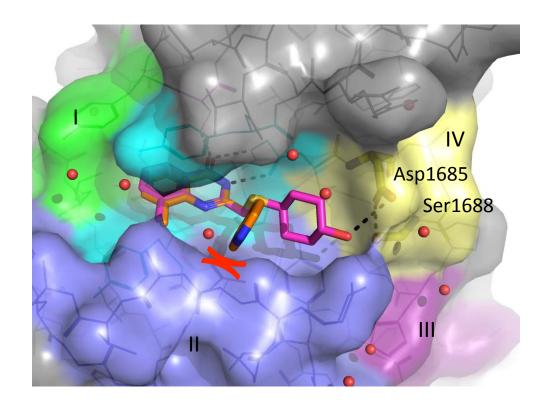

PARP14 was screened against Ribon's

A moderately potent hit was identified and profiled across the PARP enzymes

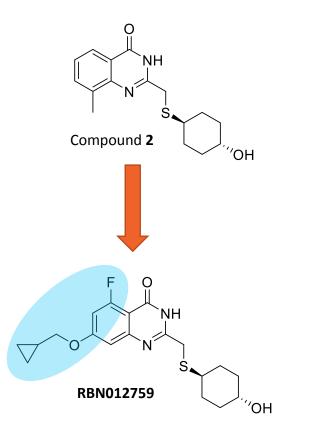


Wigle, et. al. SLAS Discovery, 2019


Compound 1 Provides Vectors to Access Areas of the NAD⁺ Binding Pocket that Were Hypothesized to Increase PARP14 Potency and Selectivity


- Hit to lead efforts targeted interactions in key areas of the NAD⁺ binding pocket
 - Region IV: the Asp/Ser motif is unique to PARP14 and PARP15
 - Region I: the monoPARPs contain hydrophobic residues, while the polyPARPs contain polar residues that form a conserved salt bridge

Modification of the Thioether Led to High Selectivity for PARP14 over the Other MonoPARPs



Changes in the binding conformation of the thioether led to the alcohol of compound 2 interacting with Asp1685 and the PARP14 D-loop adopting a "closed", ordered conformation

RBN012759 Is a Potent PARP14 Inhibitor that Is Highly Selective over All Mono- and PolyPARPs

Optimization for PARP14 potency, selectivity and PK properties led to RBN012759

RBN012759 is >300-fold selective over the monoPARPs and >1000-fold selective over the polyPARPs

Compound: 1 2 RBN012759

PARP14 IC₅₀ (μM): 1 0.3 <0.003

PARP2 PARP5a

PARP5b

PARP3

PARP4 PARP6

PARP7 PARP8

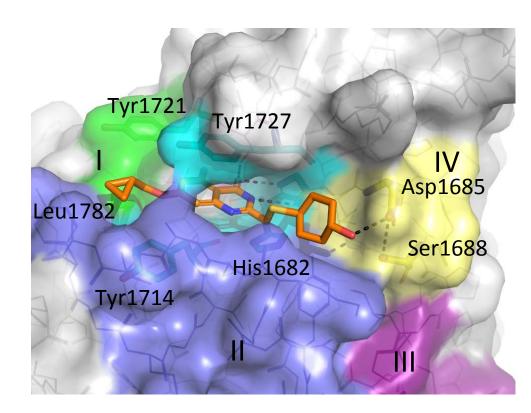
PARP9

PARP10

PARP11 PARP12 PARP15 PARP16

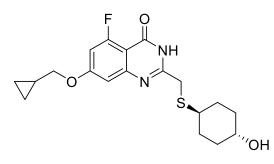
≤1

PARP14 selectivity


10

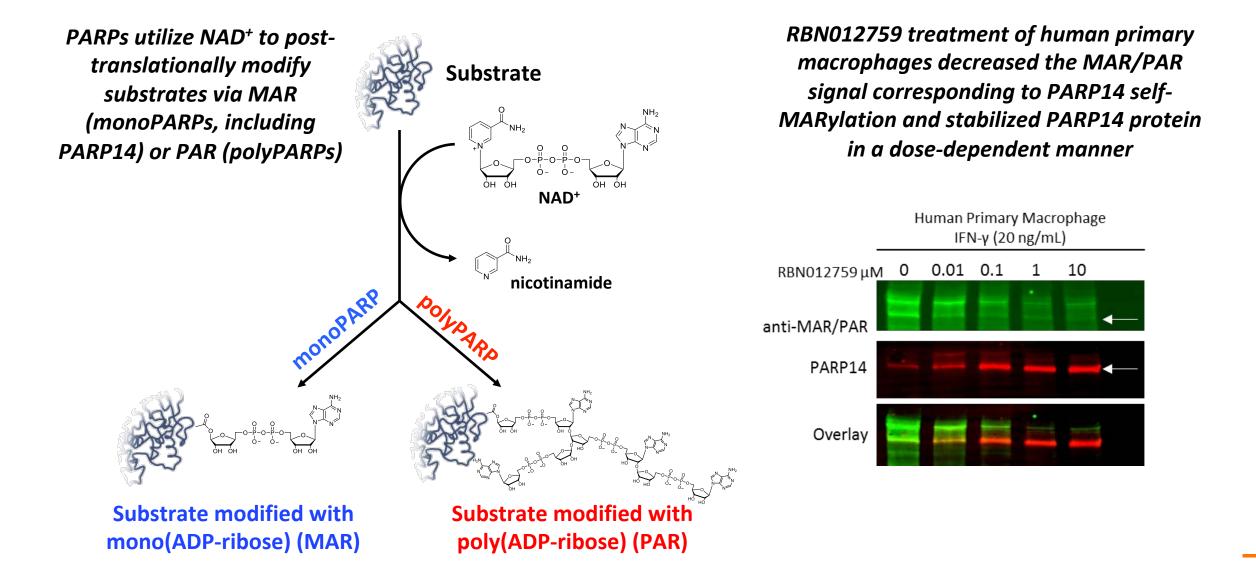
≥100

polyPARPs

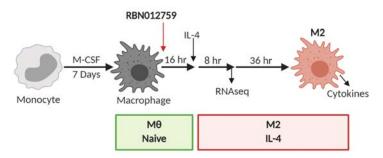

monoPARPs

RBN012759 makes new interactions with PARP14 in the Asp/Ser (IV) and MAR/PAR difference (I) regions

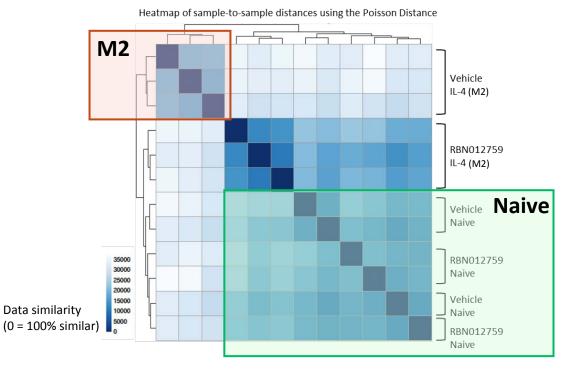
The Profile of RBN012759 Supports Its Use as an In Vitro and In Vivo PARP14 Chemical Probe


PARP14 Activity/Affinity	
IC ₅₀ human catalytic domain (μM)	<0.003
IC ₅₀ mouse catalytic domain (μM)	0.005
IC_{50} human full length (μ M)	<0.005
Cellular Target Engagement	
PARP14 NanoBRET cell probe displacement (µM)	0.003
PARP Family Activity	
PARP1 (µM)	>100
PARP2 (µM)	>100
PARP3 (µM)	>100
PARP4 (µM)	10
PARP5a (µM)	8
PARP5b (µM)	10
PARP6 (µM)	4
PARP7 (μM)	4
PARP8 (µM)	20
PARP9 (µM)	>100
PARP10 (μM)	1
PARP11 (μM)	1
PARP12 (µM)	5
PARP15 (μM)	3
PARP16 (μM)	6
In Vitro ADME and Physicochemical Properties	
Kinetic solubility at pH 7.4 (µM)	198
Caco-2 $P_{app(A-R)}$ (x 10 ⁻⁶ cm/s) / efflux ratio	19 / 1
Mouse microsomes Cl _{int} (mL/min/kg, scaled)	469
Mouse ppb (F _u)	0.13
MW / TPSA / XLogP	379 / 71 / 2.9
In Vivo PK	
Mouse Cl (mL/min/kg) / t _{1/2} (h) / Vss (L/kg)	54 / 0.4 / 1.4
Mouse %F at 100 mg/kg	30

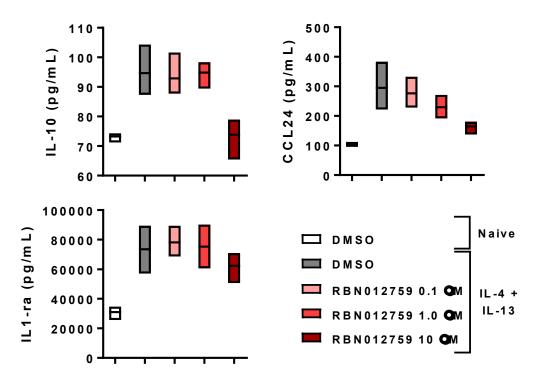
The chemical probe RBN012759:


- Is a potent inhibitor of human and mouse
 PARP14 with high PARP family selectivity
- Is sufficiently soluble, highly permeable, low efflux
- Has moderate clearance and oral bioavailability in mice
- Is well-tolerated in mice with repeat dosing up to 500 mg/kg BID
 - 75-fold coverage of the PARP14 mouse free EC₅₀ observed at C_{trough}

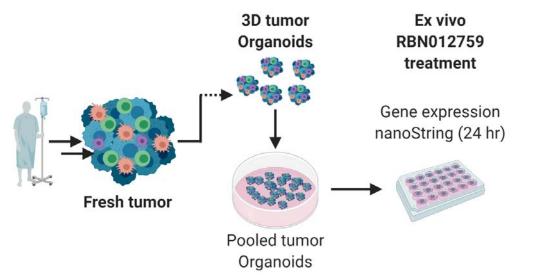
RBN012759 Demonstrates Intracellular Engagement of PARP14



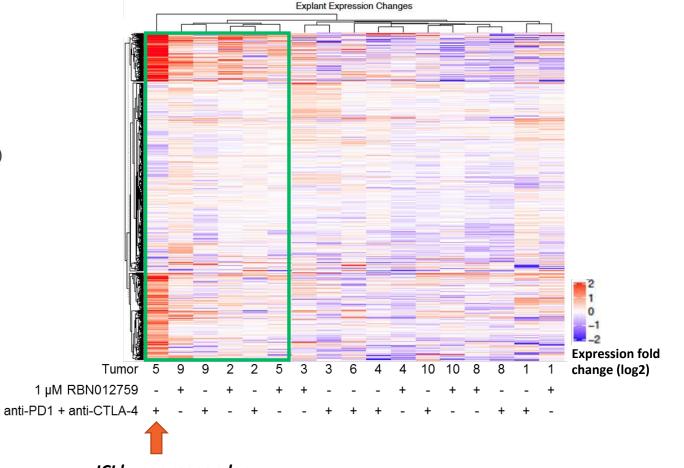
PARP14 Inhibition Reverses IL-4-Driven Gene Expression in Primary Human Macrophages


Experimental design

PARP14i reverses IL-4 stimulated gene expression


PARP14i reduces IL-4 stimulated cytokine secretion

 Treatment of primary human macrophages with RBN012759 led to decreased IL-4 driven M2-like gene expression, suggesting that PARP14 inhibition results in a less immunosuppressive phenotype


PARP14 Inhibition Induces Inflammatory Gene Expression in an Unbiased Set of Kidney Cancer Tumor Explants

Experimental design: kidney renal clear cell carcinoma (KIRC) explants

 RBN012759 treatment induced gene expression changes in tumors 5, 9 and 2 that cluster with immune checkpoint inhibitor (ICI) hyper-responder tumor 5

RBN012759 induces gene expression changes similar to immune checkpoint inhibitor combination in some tumors

ICI hyper-responder

Conclusions

- Detailed knowledge of the PARP family NAD⁺ binding pockets enabled structure-based optimization of moderately potent, unselective PARP14 hit Compound 1 into RBN012759
- RBN012759 (<0.003 μM PARP14, >300-fold selective over monoPARPs, >1000-fold selective over polyPARPs) is the most potent and selective inhibitor of PARP14 reported to date
- The properties of RBN012759 enable its use as an in vitro and in vivo PARP14 chemical probe
- Data generated in human primary macrophages and KIRC human tumor explants with RBN012759 treatment links PARP14 with suppression of the anti-tumor immune response
- RBN012759 can serve as a useful tool for further exploration of PARP14 functions in cell biology and as a drug target

Acknowledgements

Team Ribon:

Ryan Abo Ellen Bamberg Danielle Blackwell Richard Bushell Anne Cheung W. David Church Lisa Cleary David Cordo Bryan Dorsey Jennifer Downing Joseph Gozgit Linette Gray Bin Gui **Heike Keilhack** Peter Kim Danielle Knight Kaiko Kunii

Kevin Kuntz **Kristy Kuplast-Barr** Jenkins Lemera Chang Liu Alvin Lu Ahmed Mady **Christina Majer** Kristen McFachern Maegan Mikula **Elena Minissale** Jason Mo Jennifer Molina Sunaina Nayak Mario Niepel Sudha Parasuraman Nicholas Perl Yue Ren

Victoria Richon Andy Santospago Laurie Schenkel **Richard Schroeder** Prashant Shambharkar Jeff Song Tad Stewart **Kerren Swinger** Luke Utley Zacharenia Varsamis Melissa Vasbinder Tim Wigle Jodie Wong

Founders and Advisors:

James AudiaLeeMark BoothbyLarryPaul ChangTime

Lee Kraus Larry Lasky Timothy Mitchison

